Ten mistakes to avoid when writing grants
1. Time to write

• Typically, you can assume you will need 120 hours to write, review and revise an application for a three- to five-year grant.
• Bottom line: Overestimate the time you think you’ll need, and plan all your timelines accordingly.
2. Skipping the instructions

• Rules are rules
• Reviewers hate ‘creative adjustments’
• Do not bend, modify or get creative with instructions.
• Follow rules regarding font, font size, margins and word count.
• Pay attention to details on allowable budget expenses. When in doubt, ask.
3. Poor writing

• Don’t assume the reader understands your jargon and can follow the compelling rationale or bridge the gaps in your logic.

• Lead the reviewer to logical and natural conclusions.

• Keep abbreviations, acronyms and jargon to a minimum.
4. Failing to edit

• Everyone makes mistakes or communicates less clearly than needed.
• A spelling and grammar check alone is not enough.
• Edit your proposal yourself and ask others for feedback.
5. Inadvertent plagiarism

• Some funding agencies runs all grant proposals through plagiarism programs.
• Before submitting yours, do the same. Programs include iThenticate, Plagiarism Detector and Copyscape.
• You can even enter sections of your proposal into a search engine to be sure you haven’t inadvertently copied from someone else’s research.
6. Framing the right question in the right way

- Single most common reason for a grant receiving a low score is reviewers’ perception that your central scientific question lacks significance.
- Reviewer uninterest in your question could stem from your failure to communicate its significance clearly, an overly narrow focus, or a lack of novelty and originality that suggests you are addressing a problem already solved.
- One way to test your proposal’s significance is to provide a non-expert colleague with a three-sentence description. If he or she can appreciate why you are doing the work, then you are on the right track.
7. Preliminary data

• Preliminary data builds your case
• If the preliminary data are weak and call into question your proposal’s feasibility, there is a problem.
• Or there is an overly large gap between your hypothesis and your preliminary data.
8. Single route to success

• Problem if the overall success of your project depends upon the outcome of a key experiment, which you have not yet performed.

• There is a natural tendency to organize experiments in a linear and sequential fashion. For a research grant, however, this strategy can be risky.

• If the succeeding aims all depend on a positive outcome of Aim One (which is yet unproven), your whole project depends on that first experiment’s success.
9. Too ambitious a scope

• Too ambitious, with multiple hypotheses or rationales that pull the grant in disparate directions.
• This is called “spaghetti syndrome,” in which every good hypothesis, experiment or reagent in the PI’s pantry is thrown at the problem.
• This approach rests on the assumption that reviewers will find at least a few good ideas stuck on the proverbial wall, and this will raise their enthusiasm.
• In reality, this approach diminishes enthusiasm.
• It suggests a PI is unable to prioritize among the project’s various facets, which can lead to an inefficient deployment of people and resources.
10. Lack of experience

• For first-time and early investigators, reviewers will assess training and accomplishments during the postdoctoral years.

• For more senior investigators, reviewers will look at past career experience and productivity. If a particular approach is unproven with respect to your group, the most reliable strategies are:
 – a) Identifying and soliciting an outside collaborator with a published track record in the method
 – b) Devoting existing efforts to generate the preliminary data and remove doubts about your ability